词义消歧 (西)艾吉瑞(Eneko Agirre) 等 编 著作 下载 pdf 百度网盘 epub 免费 2025 电子版 mobi 在线
![词义消歧 (西)艾吉瑞(Eneko Agirre) 等 编 著作 词义消歧 (西)艾吉瑞(Eneko Agirre) 等 编 著作精美图片](https://img3m3.ddimg.cn/64/17/1395391303-1_h_1.jpg)
词义消歧 (西)艾吉瑞(Eneko Agirre) 等 编 著作电子书下载地址
- 文件名
- [epub 下载] 词义消歧 (西)艾吉瑞(Eneko Agirre) 等 编 著作 epub格式电子书
- [azw3 下载] 词义消歧 (西)艾吉瑞(Eneko Agirre) 等 编 著作 azw3格式电子书
- [pdf 下载] 词义消歧 (西)艾吉瑞(Eneko Agirre) 等 编 著作 pdf格式电子书
- [txt 下载] 词义消歧 (西)艾吉瑞(Eneko Agirre) 等 编 著作 txt格式电子书
- [mobi 下载] 词义消歧 (西)艾吉瑞(Eneko Agirre) 等 编 著作 mobi格式电子书
- [word 下载] 词义消歧 (西)艾吉瑞(Eneko Agirre) 等 编 著作 word格式电子书
- [kindle 下载] 词义消歧 (西)艾吉瑞(Eneko Agirre) 等 编 著作 kindle格式电子书
寄语:
新华书店正版,关注店铺成为会员可享店铺专属优惠,团购客户请咨询在线客服!
内容简介:
本书是"计算语言学与语言科技原文丛书"中的一册。对于计算机来说,要理解人类语言就必须消除歧义,在计算语言学领域,词义消歧(Word Sense Disambiguation,简称WSD)一直是研究者探索的内容。本书是近年来靠前学术界关于词义消歧研究成果的一部集成之作。几乎覆盖了词义消歧研究各个题目,具有重要学术价值。
书籍目录:
导读 1
Contributors 16
Foreword 19
Preface 23
1 Introduction 1
Eneko Agirre and Philip Edmonds
1.1 Word Sense Disambiguation 1
1.2 A Brief History of WSD Research 4
1.3 What is a Word Sense? 8
1.4 Applications of WSD 10
1.5 Basic Approaches to WSD 12
1.6 State-of-the-Art Performance 14
1.7 Promising Directions 15
1.8 Overview of This Book 19
1.9 Further Reading 21
References 22
2 Word Senses 29
Adam Kilgarriff
2.1 Introduction 29
2.2 Lexicographers 30
2.3 Philosophy 32
2.3.1 Meaning is Something You Do 32
2.3.2 The Fregean Tradition and Reification 33
2.3.3 Two Incompatible Semantics? 33
2.3.4 Implications for Word Senses 34
2.4 Lexicalization 35
2.5 Corpus Evidence 39
2.5.1 Lexicon Size 41
2.5.2 Quotations 42
2.6 Conclusion 43
2.7 Further Reading 44
Acknowledgments 45
References 45
3 Making Sense About Sense 47
Nancy Ide and Yorick Wilks
3.1 Introduction 47
3.2 WSD and the Lexicographers 49
3.3 WSD and Sense Inventories 51
3.4 NLP Applications and WSD 55
3.5 What Level of Sense Distinctions Do We Need for NLP, If Any? 58
3.6 What Now for WSD? 64
3.7 Conclusion 68
References 68
4 Evaluation of WSD Systems 75
Martha Palmer, Hwee Tou Ng and Hoa Trang Dang
4.1 Introduction 75
4.1.1 Terminology 76
4.1.2 Overview 80
4.2 Background 81
4.2.1 WordNet and Semcor 81
4.2.2 The Line and Interest Corpora 83
4.2.3 The DSO Corpus 84
4.2.4 Open Mind Word Expert 85
4.3 Evaluation Using Pseudo-Words 86
4.4 Senseval Evaluation Exercises 86
4.4.1 Senseval-187
Evaluation and Scoring 88
4.4.2 Senseval-288
English All-Words Task 89
English Lexical Sample Task 89
4.4.3 Comparison of Tagging Exercises 91
4.5 Sources of Inter-Annotator Disagreement 92
4.6 Granularity of Sense: Groupings for WordNet 95
4.6.1 Criteria for WordNet Sense Grouping 96
4.6.2 Analysis of Sense Grouping 97
4.7 Senseval-398
4.8 Discussion 99
References 102
5 Knowledge-Based Methods for WSD 107
Rada Mihalcea
5.1 Introduction 107
5.2 Lesk Algorithm 108
5.2.1 Variations of the Lesk Algorithm 110
Simulated Annealing 110
Simplified Lesk Algorithm 111
Augmented Semantic Spaces 113
Summary 113
5.3 Semantic Similarity 114
5.3.1 Measures of Semantic Similarity 114
5.3.2 Using Semantic Similarity Within a Local Context 117
5.3.3 Using Semantic Similarity Within a Global Context 118
5.4 Selectional Preferences 119
5.4.1 Preliminaries: Learning Word-to-Word Relations 120
5.4.2 Learning Selectional Preferences 120
5.4.3 Using Selectional Preferences 122
5.5 Heuristics for Word Sense Disambiguation 123
5.5.1 Most Frequent Sense 123
5.5.2 One Sense Per Discourse 124
5.5.3 One Sense Per Collocation 124
5.6 Knowledge-Based Methods at Senseval-2125
5.7 Conclusions 126
References 127
6 Unsupervised Corpus-Based Methods for WSD 133
Ted Pedersen
6.1 Introduction 133
6.1.1 Scope 134
6.1.2 Motivation 136
Distributional Methods 137
Translational Equivalence 139
6.1.3 Approaches 140
6.2 Type-Based Discrimination 141
6.2.1 Representation of Context 142
6.2.2 Algorithms 145
Latent Semantic Analysis (LSA) 146
Hyperspace Analogue to Language (HAL) 147
Clustering By Committee (CBC) 148
6.2.3 Discussion 150
6.3 Token-Based Discrimination 150
6.3.1 Representation of Context 151
6.3.2 Algorithms 151
Context Group Discrimination 152
McQuitty’s Similarity Analysis 154
6.3.3 Discussion 157
6.4 Translational Equivalence 158
6.4.1 Representation of Context 159
6.4.2 Algorithms 159
6.4.3 Discussion 160
6.5 Conclusions and the Way Forward 161
Acknowledgments 162
References 162
7 Supervised Corpus-Based Methods for WSD 167
Lluís M??rquez, Gerard Escudero, David Martínez and German Rigau
7.1 Introduction to Supervised WSD 167
7.1.1 Machine Learning for Classification 168
An Example on WSD 170
7.2 A Survey of Supervised WSD 171
7.2.1 Main Corpora Used 172
7.2.2 Main Sense Repositories 173
7.2.3 Representation of Examples by Means of Features 174
7.2.4 Main Approaches to Supervised WSD 175
Probabilistic Methods 175
Methods Based on the Similarity of the Examples 176
Methods Based on Discriminating Rules 177
Methods Based on Rule Combination 179
Linear Classifiers and Kernel-Based Approaches 179
Discourse Properties: The Yarowsky Bootstrapping Algorithm 181
7.2.5 Supervised Systems in the Senseval Evaluations 183
7.3 An Empirical Study of Supervised Algorithms for WSD 184
7.3.1 Five Learning Algorithms Under Study 185
Na?ve Bayes (NB) 185
Exemplar-Based Learning (kNN) 186
Decision Lists (DL) 187
AdaBoost (AB) 187
Support Vector Machines (SVM) 189
7.3.2 Empirical Evaluation on the DSO Corpus 190
Experiments 191
7.4 Current Challenges of the Supervised Approach 195
7.4.1 Right-Sized Training Sets 195
7.4.2 Porting Across Corpora 196
7.4.3 The Knowledge Acquisition Bottleneck 197
Automatic Acquisition of Training Examples 198
Active Learning 199
Combining Training Examples from Different Words 199
Parallel Corpora 200
7.4.4 Bootstrapping 201
7.4.5 Feature Selection and Parameter Optimization 202
7.4.6 Combination of Algorithms and Knowledge Sources 203
7.5 Conclusions and Future Trends 205
Acknowledgments 206
References 207
8 Knowledge Sources for WSD 217
Eneko Agirre and Mark Stevenson
8.1 Introduction 217
8.2 Knowledge Sources Relevant to WSD 218
8.2.1 Syntactic 219
Part of Speech (KS 1) 219
Morphology (KS 2) 219
Collocations (KS 3) 220
Subcategorization (KS 4) 220
8.2.2 Semantic 220
Frequency of Senses (KS 5) 220
Semantic Word Associations (KS 6) 221
Selectional Preferences (KS 7) 221
Semantic Roles (KS 8) 222
8.2.3 Pragmatic/Topical 222
Domain (KS 9) 222
Topical Word Association (KS 10) 222
Pragmatics (KS 11) 223
8.3 Features and Lexical Resources 223
8.3.1 Target-Word Specific Features 224
8.3.2 Local Features 225
8.3.3 Global Features 227
8.4 Identifying Knowledge Sources in Actual Systems 228
8.4.1 Senseval-2 Systems 229
8.4.2 Senseval-3 Systems 231
8.5 Comparison of Experimental Results 231
8.5.1 Senseval Results 232
8.5.2 Yarowsky and Florian (2002) 233
8.5.3 Lee and Ng (2002) 234
8.5.4 Martínez et al.(2002) 237
8.5.5 Agirre and Martínez (2001 a) 238
8.5.6 Stevenson and Wilks (2001) 240
8.6 Discussion 242
8.7 Conclusions 245
Acknowledgments 246
References 247
9 Automatic Acquisition of Lexical Information and Examples 253
Julio Gonzalo and Felisa Verdejo
9.1 Introduction 253
9.2 Mining Topical Knowledge About Word Senses 254
9.2.1 Topic Signatures 255
9.2.2 Association of Web Directories to Word Senses 257
9.3 Automatic Acquisition of Sense-Tagged Corpora 258
9.3.1 Acquisition by Direct Web Searching 258
9.3.2 Bootstrapping from Seed Examples 261
9.3.3 Acquisition via Web Directories 263
9.3.4 Acquisition via Cross-Language Evidence 264
9.3.5 Web-Based Cooperative Annotation 268
9.4 Discussion 269
Acknowledgments 271
References 272
10 Domain-Specific WSD 275
Paul Buitelaar, Bernardo Magnini, Carlo Strapparava and Piek Vossen
10.1 Introduction 275
10.2 Approaches to Domain-Specific WSD 277
10.2.1 Subject Codes 277
10.2.2 Topic Signatures and Topic Variation 282
Topic Signatures 282
Topic Variation 283
10.2.3 Domain Tuning 284
Top-down Domain Tuning 285
Bottom-up Domain Tuning 285
10.3 Domain-Specific Disambiguation in Applications 288
10.3.1 User-Modeling for Recommender Systems 288
10.3.2 Cross-Lingual Information Retrieval 289
10.3.3 The MEANING Project 292
10.4 Conclusions 295
References 296
11 WSD in NLP Applications 299
Philip Resnik
11.1 Introduction 299
11.2 Why WSD? 300
Argument from Faith 300
Argument by Analogy 301
Argument from Specific Applications 302
11.3 Traditional WSD in Applications 303
11.3.1 WSD in Traditional Information Retrieval 304
11.3.2 WSD in Applications Related to Information Retrieval 307
Cross-Language IR 308
Question Answering 309
Document Classification 312
11.3.3 WSD in Traditional Machine Translation 313
11.3.4 Sense Ambiguity in Statistical Machine Translation 315
11.3.5 Other Emerging Applications 317
11.4 Alternative Conceptions of Word Sense 320
11.4.1 Richer Linguistic Representations 320
11.4.2 Patterns of Usage 321
11.4.3 Cross-Language Relationships 323
11.5 Conclusions 325
Acknowledgments 325
References 326
A Resources for WSD 339
A.1 Sense Inventories 339
A.1.1 Dictionaries 339
A.1.2 Thesauri 341
A.1.3 Lexical Knowledge Bases 341
A.2 Corpora 343
A.2.1 Raw Corpora 343
A.2.2 Sense-Tagged Corpora 345
A.2.3 Automatically Tagged Corpora 347
A.3 Other Resources 348
A.3.1 Software 348
A.3.2 Utilities, Demos, and Data 349
A.3.3 Language Data Providers 350
A.3.4 Organizations and Mailing Lists 350
Index of Terms 353
Index of Authors and Algorithms 361
作者介绍:
艾吉瑞,西班牙国立巴斯克大学副教授。
出版社信息:
暂无出版社相关信息,正在全力查找中!
书籍摘录:
On the other hand, it is certainly possible that sufficiently separate senses can be identified using multi-lingual criteria-i.e., by identifying senses of the same homograph that have different translations in some sig-nificant number of other languages-as discussed in Section 3.3.For example, the two senses of paper cited above are translated in French as journal and papier, respectivcly; similarly, the two etymologically-related senses of nail (fingernail and the metal object that one hammers) are,trans-lated as ongle and ctou.At the same time, there is a danger in relying on cross-lingualism as the basis of sense, since the same historical processes of sense "chaining" (Cruse 1986, Lakoff 1987) can occur in different an guages.For example, the English wing and its equivalent ala in ltalian have extended their original sense in the same way, from birds to air planes, to buildings, and even to soccer positions.The Italian-Englisn cross-corpus correlations of the two words would lead to the conclusion that both have a single sense, when in fact they have wide sense deviations approaching the homographic.
Another source of information concerning relevant sense distinctions is domain, as discussed in Chapter 10.If senses of a given word are distin- guished by their use in particular domains, this could offer evidence that they are distinguishable at the homograph-like level.At the same time, senses that are not distinguished by domain-take, for example, the sense of bank as a finan institution versus its sense as a building that houses a fman institution-might, for all practical purposes, be regarded as a single, homograph-level sense.
在线阅读/听书/购买/PDF下载地址:
原文赏析:
暂无原文赏析,正在全力查找中!
其它内容:
编辑推荐
《词义消歧——算法与应用(英文影印版)》是本全面探讨词义消歧的书,对于重要的算法、方式、指标、结果、哲学问题和应用,都有涉略,并有这个领域的非常不错学者对本领域的历史及发展所做的较为全面的综述。研究者可以从本书了解到本领域的成果和发展趋势,开发人员可以从本书了解一些技术和方法。
网站评分
书籍多样性:5分
书籍信息完全性:3分
网站更新速度:5分
使用便利性:8分
书籍清晰度:9分
书籍格式兼容性:5分
是否包含广告:7分
加载速度:5分
安全性:9分
稳定性:6分
搜索功能:3分
下载便捷性:3分
下载点评
- 无颠倒(495+)
- 内容齐全(396+)
- 无漏页(219+)
- 方便(542+)
- 内涵好书(264+)
- 章节完整(482+)
下载评价
- 网友 芮***枫:
有点意思的网站,赞一个真心好好好 哈哈
- 网友 通***蕊:
五颗星、五颗星,大赞还觉得不错!~~
- 网友 师***怀:
好是好,要是能免费下就好了
- 网友 林***艳:
很好,能找到很多平常找不到的书。
- 网友 康***溪:
强烈推荐!!!
- 网友 师***怡:
说的好不如用的好,真心很好。越来越完美
- 网友 堵***格:
OK,还可以
- 网友 扈***洁:
还不错啊,挺好
- 网友 丁***菱:
好好好好好好好好好好好好好好好好好好好好好好好好好
- 网友 温***欣:
可以可以可以
喜欢"词义消歧 (西)艾吉瑞(Eneko Agirre) 等 编 著作"的人也看了
离心油泵理论与应用 下载 pdf 百度网盘 epub 免费 2025 电子版 mobi 在线
【官方直发】天虫草1 大地的追猎 北京联合出版聂峻新作少年英雄传奇国产水彩风格原创原动力漫画后浪漫图像小说书籍 下载 pdf 百度网盘 epub 免费 2025 电子版 mobi 在线
速成书画装裱技法 田维玉 著 下载 pdf 百度网盘 epub 免费 2025 电子版 mobi 在线
考研英语十年真题点石成金(基础版) 下载 pdf 百度网盘 epub 免费 2025 电子版 mobi 在线
一流的教养(畅销300万的育儿圣经,横扫世界的经典育儿理念,关于孩子成长的神奇语言,每一句都振聋发聩,激发父母觉醒!) 下载 pdf 百度网盘 epub 免费 2025 电子版 mobi 在线
小学教材全练 四年级语文下 RJ版 人教版 2019春 下载 pdf 百度网盘 epub 免费 2025 电子版 mobi 在线
【预订】跨界理论 原版中文繁体哲学 史书美 善本图书 下载 pdf 百度网盘 epub 免费 2025 电子版 mobi 在线
2020注册电气工程师执业资格考试 公共基础 考前冲刺习题集 下载 pdf 百度网盘 epub 免费 2025 电子版 mobi 在线
宏章出版·2012全国会计专业技术资格考试历年真题专家解析<<中级会计实务>> 下载 pdf 百度网盘 epub 免费 2025 电子版 mobi 在线
BEC听力全攻略 中级 经济科学出版社 下载 pdf 百度网盘 epub 免费 2025 电子版 mobi 在线
- 卷烟调香学 赵铭钦 主编 下载 pdf 百度网盘 epub 免费 2025 电子版 mobi 在线
- CSS世界【正版】 下载 pdf 百度网盘 epub 免费 2025 电子版 mobi 在线
- 网络传播革命:权力与规制 蔡文之 著 上海人民出版社【正版】 下载 pdf 百度网盘 epub 免费 2025 电子版 mobi 在线
- 阅微草堂笔记(全二册)(中国古代名著全本译注丛书) 下载 pdf 百度网盘 epub 免费 2025 电子版 mobi 在线
- 财务成本管理(2023注会教材) 下载 pdf 百度网盘 epub 免费 2025 电子版 mobi 在线
- 心灵契约 王彦博 著 中国商业出版社【正版】 下载 pdf 百度网盘 epub 免费 2025 电子版 mobi 在线
- 万唯教育天津2024中考试题研究化学中考化学总复习资料教辅导书模拟真题试卷练习册九年级初三必刷题含2023真题 下载 pdf 百度网盘 epub 免费 2025 电子版 mobi 在线
- 图说天下 探索发现系列 二战之谜【售后无忧】 下载 pdf 百度网盘 epub 免费 2025 电子版 mobi 在线
- 失踪的总统 比尔·克林顿政治悬疑小说 高度烧脑悬念重重 揭秘白宫权力层幕后不为人知的秘密正版 下载 pdf 百度网盘 epub 免费 2025 电子版 mobi 在线
- 供暖通风与空气调节术语标准GB/T50155-2015 下载 pdf 百度网盘 epub 免费 2025 电子版 mobi 在线
书籍真实打分
故事情节:7分
人物塑造:7分
主题深度:3分
文字风格:9分
语言运用:8分
文笔流畅:7分
思想传递:9分
知识深度:7分
知识广度:4分
实用性:6分
章节划分:5分
结构布局:8分
新颖与独特:6分
情感共鸣:5分
引人入胜:7分
现实相关:9分
沉浸感:7分
事实准确性:3分
文化贡献:5分