深度学习入门之PyTorch【售后无忧】 下载 pdf 百度网盘 epub 免费 2025 电子版 mobi 在线
深度学习入门之PyTorch【售后无忧】电子书下载地址
寄语:
[正版书籍,现货速发,满减优惠,可开电子发票]
内容简介:
《深度学习入门之PyTorch》深度学习如今已经成为科技领域最炙手可热的技术,在《深度学习入门之PyTorch》中,我们将帮助你入门深度学习。《深度学习入门之PyTorch》将从机器学习和深度学习的基础理论入手,从零开始学习 PyTorch,了解 PyTorch 基础,以及如何用 PyTorch 框架搭建模型。通过阅读《深度学习入门之PyTorch》,你将学到机器学习中的线性回归和 Logistic 回归、深度学习的优化方法、多层全连接神经网络、卷积神经网络、循环神经网络,以及生成对抗网络,最后通过实战了解深度学习前沿的研究成果,以及 PyTorch 在实际项目中的应用。《深度学习入门之PyTorch》将理论和代码相结合,帮助读者更好地入门深度学习,适合任何对深度学习感兴趣的人阅读。
书籍目录:
章深度学习介绍1
1.1 人工智能. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 数据挖掘、机器学习与深度学习. . . . . . . . . . . . . . . . . . . . . . . 2
1.2.1 数据挖掘. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2.2 机器学习. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2.3 深度学习. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 学习资源与建议. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
第2 章深度学习框架11
2.1 深度学习框架介绍. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2 PyTorch 介绍. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2.1 什么是PyTorch . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2.2 为何要使用PyTorch . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.3 配置PyTorch 深度学习环境. . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.3.1 操作的选择. . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.3.2 Python 开发环境的安装. . . . . . . . . . . . . . . . . . . . . . . . 16
2.3.3 PyTorch 的安装. . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
第3 章多层全连接神经网络24
3.1 热身:PyTorch 基础. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.1.1 Tensor(张量) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.1.2 Variable(变量) . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.1.3 Dataset(数据集) . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.1.4 nn.Module(模组) . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.1.5 torch.optim(优化) . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.1.6 模型的保存和加载. . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.2 线性模型. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.2.1 问题介绍. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.2.2 一维线性回归. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.2.3 多维线性回归. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.2.4 一维线性回归的代码实现. . . . . . . . . . . . . . . . . . . . . . 35
3.2.5 多项式回归. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.3 分类问题. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.3.1 问题介绍. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.3.2 Logistic 起源. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.3.3 Logistic 分布. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.3.4 二分类的Logistic 回归. . . . . . . . . . . . . . . . . . . . . . . . 43
3.3.5 模型的参数估计. . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.3.6 Logistic 回归的代码实现. . . . . . . . . . . . . . . . . . . . . . . 45
3.4 简单的多层全连接前向网络. . . . . . . . . . . . . . . . . . . . . . . . . 49
3.4.1 模拟神经元. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.4.2 单层神经网络的分类器. . . . . . . . . . . . . . . . . . . . . . . . 50
3.4.3 激活函数. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
3.4.4 神经网络的结构. . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
3.4.5 模型的表示能力与容量. . . . . . . . . . . . . . . . . . . . . . . . 55
3.5 深度学习的基石:反向传播算法. . . . . . . . . . . . . . . . . . . . . . . 57
3.5.1 链式法则. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
3.5.2 反向传播算法. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
3.5.3 Sigmoid 函数举例. . . . . . . . . . . . . . . . . . . . . . . . . . . 58
3.6 各种优化算法的变式. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
3.6.1 梯度下降法. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
3.6.2 梯度下降法的变式. . . . . . . . . . . . . . . . . . . . . . . . . . 62
3.7 处理数据和训练模型的技巧. . . . . . . . . . . . . . . . . . . . . . . . . 64
3.7.1 数据预处理. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
3.7.2 权重初始化. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
3.7.3 防止过拟合. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
3.8 多层全连接神经网络实现MNIST 手写数字分类. . . . . . . . . . . . . . 69
3.8.1 简单的三层全连接神经网络. . . . . . . . . . . . . . . . . . . . . 70
3.8.2 添加激活函数. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
3.8.3 添加批标准化. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
3.8.4 训练网络. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
第4 章卷积神经网络76
4.1 主要任务及起源. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
4.2 卷积神经网络的原理和结构. . . . . . . . . . . . . . . . . . . . . . . . . 77
4.2.1 卷积层. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
4.2.2 池化层. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
4.2.3 全连接层. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
4.2.4 卷积神经网络的基本形式. . . . . . . . . . . . . . . . . . . . . . 85
4.3 PyTorch 卷积模块. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
4.3.1 卷积层. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
4.3.2 池化层. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
4.3.3 提取层结构. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
4.3.4 如何提取参数及自定义初始化. . . . . . . . . . . . . . . . . . . . 91
4.4 卷积神经网络案例分析. . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
4.4.1 LeNet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
4.4.2 AlexNet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
4.4.3 VGGNet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
4.4.4 GoogLeNet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
4.4.5 ResNet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
4.5 再实现MNIST 手写数字分类. . . . . . . . . . . . . . . . . . . . . . . . . 103
4.6 图像增强的方法. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
4.7 实现cifar10 分类. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
第5 章循环神经网络111
5.1 循环神经网络. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
5.1.1 问题介绍. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
5.1.2 循环神经网络的基本结构. . . . . . . . . . . . . . . . . . . . . . 112
5.1.3 存在的问题. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
5.2 循环神经网络的变式:LSTM 与GRU . . . . . . . . . . . . . . . . . . . . 116
5.2.1 LSTM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
5.2.2 GRU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
5.2.3 收敛性问题. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
5.3 循环神经网络的PyTorch 实现. . . . . . . . . . . . . . . . . . . . . . . . 122
5.3.1 PyTorch 的循环网络模块. . . . . . . . . . . . . . . . . . . . . . . 122
5.3.2 实例介绍. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
5.4 自然语言处理的应用. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
5.4.1 词嵌入. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
5.4.2 词嵌入的PyTorch 实现. . . . . . . . . . . . . . . . . . . . . . . . 133
5.4.3 N Gram 模型. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
5.4.4 单词预测的PyTorch 实现. . . . . . . . . . . . . . . . . . . . . . . 134
5.4.5 词性判断. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
5.4.6 词性判断的PyTorch 实现. . . . . . . . . . . . . . . . . . . . . . . 137
5.5 循环神经网络
作者介绍:
廖星宇,目前就读于中国科学技术大学应用数学系,获得国家一等奖学金。在个人博客、知乎等平台上发布多篇关于深度学习的文章,具有的阅读量和人气。
出版社信息:
暂无出版社相关信息,正在全力查找中!
书籍摘录:
暂无相关书籍摘录,正在全力查找中!
在线阅读/听书/购买/PDF下载地址:
原文赏析:
暂无原文赏析,正在全力查找中!
其它内容:
书籍介绍
《深度学习入门之PyTorch》深度学习如今已经成为科技领域最炙手可热的技术,在《深度学习入门之PyTorch》中,我们将帮助你入门深度学习。《深度学习入门之PyTorch》将从机器学习和深度学习的基础理论入手,从零开始学习 PyTorch,了解 PyTorch 基础,以及如何用 PyTorch 框架搭建模型。通过阅读《深度学习入门之PyTorch》,你将学到机器学习中的线性回归和 Logistic 回归、深度学习的优化方法、多层全连接神经网络、卷积神经网络、循环神经网络,以及生成对抗网络,最后通过实战了解深度学习前沿的研究成果,以及 PyTorch 在实际项目中的应用。《深度学习入门之PyTorch》将理论和代码相结合,帮助读者更好地入门深度学习,适合任何对深度学习感兴趣的人阅读。
网站评分
书籍多样性:7分
书籍信息完全性:7分
网站更新速度:8分
使用便利性:3分
书籍清晰度:3分
书籍格式兼容性:9分
是否包含广告:9分
加载速度:9分
安全性:7分
稳定性:5分
搜索功能:8分
下载便捷性:5分
下载点评
- 可以购买(107+)
- 差评(486+)
- 种类多(278+)
- 少量广告(400+)
- 目录完整(156+)
- 全格式(342+)
- 图文清晰(322+)
- 三星好评(263+)
- 内涵好书(502+)
- 下载快(67+)
- 中评(654+)
- 快捷(509+)
- 服务好(126+)
下载评价
- 网友 谭***然:
如果不要钱就好了
- 网友 谢***灵:
推荐,啥格式都有
- 网友 田***珊:
可以就是有些书搜不到
- 网友 冯***卉:
听说内置一千多万的书籍,不知道真假的
- 网友 宫***玉:
我说完了。
- 网友 寿***芳:
可以在线转化哦
- 网友 陈***秋:
不错,图文清晰,无错版,可以入手。
- 网友 冉***兮:
如果满分一百分,我愿意给你99分,剩下一分怕你骄傲
- 网友 康***溪:
强烈推荐!!!
- 网友 孙***夏:
中评,比上不足比下有余
- 网友 权***颜:
下载地址、格式选择、下载方式都还挺多的
- 网友 辛***玮:
页面不错 整体风格喜欢
- 网友 堵***洁:
好用,支持
- 网友 方***旋:
真的很好,里面很多小说都能搜到,但就是收费的太多了
喜欢"深度学习入门之PyTorch【售后无忧】"的人也看了
学术学位研究生核心课程指南(4试行) 国务院学位委员会第七届学科评议组编 著 下载 pdf 百度网盘 epub 免费 2025 电子版 mobi 在线
东南亚地图 约1.2米 双语 亚洲南海地区 泰国缅甸马来西亚印度尼西亚菲律宾老挝越南柬埔寨 中国地图正版全新挂图RCEP十五国2021 下载 pdf 百度网盘 epub 免费 2025 电子版 mobi 在线
环保游戏 石油工业出版社 下载 pdf 百度网盘 epub 免费 2025 电子版 mobi 在线
《同学关系?》明信片套装 下载 pdf 百度网盘 epub 免费 2025 电子版 mobi 在线
中国互联网新闻发展史 下载 pdf 百度网盘 epub 免费 2025 电子版 mobi 在线
新东方 过关斩词:小学英语核心词汇 四年级下 小学英语系列辅导书籍 全国通用 下载 pdf 百度网盘 epub 免费 2025 电子版 mobi 在线
正版 怎样下国际跳棋 国际跳棋攻杀练习(共两册)国际跳棋普及教材 国际跳棋 书籍 棋牌游戏 国际跳棋知识 国际跳棋 国际跳棋教程I正版 下载 pdf 百度网盘 epub 免费 2025 电子版 mobi 在线
杨绛传:永不褪色的优雅 下载 pdf 百度网盘 epub 免费 2025 电子版 mobi 在线
全新正版图书 电子商务导论徐雅卿西安电子科技大学正版9787560647913 电子商务高等学校教材 下载 pdf 百度网盘 epub 免费 2025 电子版 mobi 在线
试题调研第十辑理科综合老高考版高考押题第10辑考前抢分2024新版 MOOK系列 高考试题调研第十辑 下载 pdf 百度网盘 epub 免费 2025 电子版 mobi 在线
- 会展活动的创意与设计 下载 pdf 百度网盘 epub 免费 2025 电子版 mobi 在线
- 冒险岛数学奇遇记45 下载 pdf 百度网盘 epub 免费 2025 电子版 mobi 在线
- 小学口算提优训练三年级下册数学人教版2020春季口算速算练习册辅导书变式常规口算题口算心算速算天天练小学生3年级数学口算题卡 下载 pdf 百度网盘 epub 免费 2025 电子版 mobi 在线
- 二级注册结构工程师专业考试复习教程(上下) 下载 pdf 百度网盘 epub 免费 2025 电子版 mobi 在线
- 电厂热工过程自动控制(第二版)/“十三五”普通高等教育本科规划教材 下载 pdf 百度网盘 epub 免费 2025 电子版 mobi 在线
- 博士生入学考试英语模拟试题集 下载 pdf 百度网盘 epub 免费 2025 电子版 mobi 在线
- 9787562837930 下载 pdf 百度网盘 epub 免费 2025 电子版 mobi 在线
- 探秘细菌王国(全4册)医学博士妈妈打造适合孩子的细菌科普绘本,构建儿童细菌认知体系,轻松了解微生物知识,引导孩子形成讲卫生好习惯 下载 pdf 百度网盘 epub 免费 2025 电子版 mobi 在线
- 考博英语一本全周计划 第7版 下载 pdf 百度网盘 epub 免费 2025 电子版 mobi 在线
- 老年康复 下载 pdf 百度网盘 epub 免费 2025 电子版 mobi 在线
书籍真实打分
故事情节:8分
人物塑造:3分
主题深度:7分
文字风格:8分
语言运用:4分
文笔流畅:3分
思想传递:5分
知识深度:4分
知识广度:5分
实用性:7分
章节划分:5分
结构布局:5分
新颖与独特:5分
情感共鸣:7分
引人入胜:5分
现实相关:4分
沉浸感:9分
事实准确性:4分
文化贡献:8分